How to Fake Auxiliary Input

نویسندگان

  • Dimitar Jetchev
  • Krzysztof Pietrzak
چکیده

Consider a joint distribution (X,A) on a set X ×{0, 1}. We show that for any family F of distinguishers f : X × {0, 1} → {0, 1}, there exists a simulator h : X → {0, 1} such that 1. no function in F can distinguish (X,A) from (X,h(X)) with advantage ǫ, 2. h is only O(2ǫ) times less efficient than the functions in F . For the most interesting settings of the parameters (in particular, the cryptographic case where X has superlogarithmic min-entropy, ǫ > 0 is negligible and F consists of circuits of polynomial size), we can make the simulator h deterministic. As an illustrative application of this theorem, we give a new security proof for the leakage-resilient stream-cipher from Eurocrypt’09. Our proof is simpler and quantitatively much better than the original proof using the dense model theorem, giving meaningful security guarantees if instantiated with a standard blockcipher like AES. Subsequent to this work, Chung, Lui and Pass gave an interactive variant of our main theorem, and used it to investigate weak notions of Zero-Knowledge. Vadhan and Zheng give a more constructive version of our theorem using their new uniform min-max theorem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How textbooks (and learners) get it wrong: A corpus study of modal auxiliary verbs

Many  elements  contribute  to  the  relative  difficulty  in  acquiring  specific  aspects  of  English  as  a foreign  language  (Goldschneider  &  DeKeyser,  2001).  Modal  auxiliary  verbs  (e.g.  could,  might), are  examples  of  a  structure  that  is  difficult  for  many  learners.  Not  only  are  they  particularly complex  semantically,  but  especially  in  the  Malaysian  context ...

متن کامل

Image Credibility Analysis with Effective Domain Transferred Deep Networks

Numerous fake images spread on social media today and can severely jeopardize the credibility of online content to public. In this paper, we employ deep networks to learn distinct fake image related features. In contrast to authentic images, fake images tend to be eye-catching and visually striking. Compared with traditional visual recognition tasks, it is extremely challenging to understand th...

متن کامل

Computer-assisted machine-to-human protocols for authentication of a RAM-based embedded system

Mobile readers used for optical identification of manufactured products can be tampered in different ways: with hardware Trojan or by powering up with fake configuration data. How a human verifier can authenticate the reader to be handled for goods verification ? In this paper, two cryptographic protocols are proposed to achieve the verification of a RAM-based system through a trusted auxiliary...

متن کامل

Random Oracles and Auxiliary Input

We introduce a variant of the random oracle model where oracledependent auxiliary input is allowed. In this setting, the adversary gets an auxiliary input that can contain information about the random oracle. Using simple examples we show that this model should be preferred over the classical variant where the auxiliary input is independent of the random oracle. In the presence of oracle-depend...

متن کامل

Exploiting Tri-Relationship for Fake News Detection

Social media for news consumption is becoming popular nowadays. The low cost, easy access and rapid information dissemination of social media bring benefits for people to seek out news timely. However, it also causes the widespread of fake news, i.e., low-quality news pieces that are intentionally fabricated. The fake news brings about several negative effects on individual consumers, news ecos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013